Extensions 1→N→G→Q→1 with N=C32:7D4 and Q=C22

Direct product G=NxQ with N=C32:7D4 and Q=C22
dρLabelID
C22xC32:7D4144C2^2xC3^2:7D4288,1017

Semidirect products G=N:Q with N=C32:7D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C32:7D4:1C22 = S32xD4φ: C22/C1C22 ⊆ Out C32:7D4248+C3^2:7D4:1C2^2288,958
C32:7D4:2C22 = S3xD4:2S3φ: C22/C1C22 ⊆ Out C32:7D4488-C3^2:7D4:2C2^2288,959
C32:7D4:3C22 = Dic6:12D6φ: C22/C1C22 ⊆ Out C32:7D4248+C3^2:7D4:3C2^2288,960
C32:7D4:4C22 = D12:12D6φ: C22/C1C22 ⊆ Out C32:7D4488-C3^2:7D4:4C2^2288,961
C32:7D4:5C22 = D12:13D6φ: C22/C1C22 ⊆ Out C32:7D4248+C3^2:7D4:5C2^2288,962
C32:7D4:6C22 = S3xC4oD12φ: C22/C2C2 ⊆ Out C32:7D4484C3^2:7D4:6C2^2288,953
C32:7D4:7C22 = D12:24D6φ: C22/C2C2 ⊆ Out C32:7D4484C3^2:7D4:7C2^2288,955
C32:7D4:8C22 = C2xD6.3D6φ: C22/C2C2 ⊆ Out C32:7D448C3^2:7D4:8C2^2288,970
C32:7D4:9C22 = C2xS3xC3:D4φ: C22/C2C2 ⊆ Out C32:7D448C3^2:7D4:9C2^2288,976
C32:7D4:10C22 = C32:2+ 1+4φ: C22/C2C2 ⊆ Out C32:7D4244C3^2:7D4:10C2^2288,978
C32:7D4:11C22 = C2xD4xC3:S3φ: C22/C2C2 ⊆ Out C32:7D472C3^2:7D4:11C2^2288,1007
C32:7D4:12C22 = C2xC12.D6φ: C22/C2C2 ⊆ Out C32:7D4144C3^2:7D4:12C2^2288,1008
C32:7D4:13C22 = C32:82+ 1+4φ: C22/C2C2 ⊆ Out C32:7D472C3^2:7D4:13C2^2288,1009
C32:7D4:14C22 = C4oD4xC3:S3φ: C22/C2C2 ⊆ Out C32:7D472C3^2:7D4:14C2^2288,1013
C32:7D4:15C22 = C62.154C23φ: C22/C2C2 ⊆ Out C32:7D472C3^2:7D4:15C2^2288,1014
C32:7D4:16C22 = C2xC12.59D6φ: trivial image144C3^2:7D4:16C2^2288,1006

Non-split extensions G=N.Q with N=C32:7D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C32:7D4.C22 = Dic6.24D6φ: C22/C1C22 ⊆ Out C32:7D4488-C3^2:7D4.C2^2288,957
C32:7D4.2C22 = D12.33D6φ: C22/C2C2 ⊆ Out C32:7D4484C3^2:7D4.2C2^2288,945
C32:7D4.3C22 = C32:92- 1+4φ: C22/C2C2 ⊆ Out C32:7D4144C3^2:7D4.3C2^2288,1015
C32:7D4.4C22 = C32:72- 1+4φ: trivial image144C3^2:7D4.4C2^2288,1012

׿
x
:
Z
F
o
wr
Q
<